Process Optimization Through Predictive Modelling: Making It Work!

Presentation by :

Vincent Béchard, M.Sc.A. Dominic St-Onge, P.Eng., MBA

O The speakers

Dominic St-Onge, P.Eng., MBA Consultant in Operational Excellence Différence GCS inc. <u>dstonge@difference-gcs.com</u>

- 18 years of experience in pulp and paper industry, in Canada, USA and UK
- Bachelor degree in Chemical Engineering, Master's in Business Administration
- Lean Six Sigma Black Belt since 2015
- Passionate about pulp and paper processes, meeting people, solving problem and analyzing data!

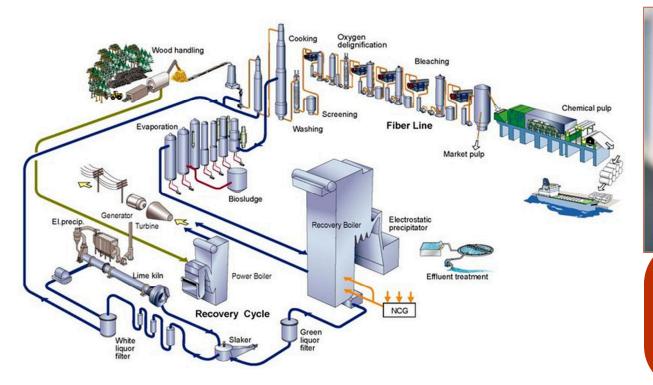
Vincent Béchard, B.Eng., MASc. Associate, Analytical Decision Specialist Différence GCS inc. vbechard@difference-gcs.com

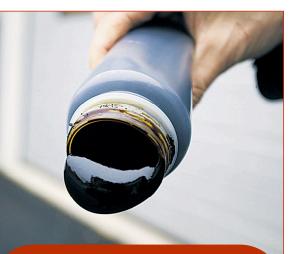
- = 19 years of experience in mathematical decision-making, simulation and data science
- Bachelor degree in Chemical Engineering, Master's degree in Applied Mathematics (process optimization)
- Analyzed tons of data and developed many scientific applications, models, simulations...
- Helping clients to unlock value from their databases and to reach the full potential of their assets. If it's data or modelling, I am here!

- \equiv History and technical works
- ≡ Towards model-based adjustments
- \equiv An happy ending story

History and technical works

Some technical background





Black liquor is mainly composed of lignin (organic), inorganics and water!

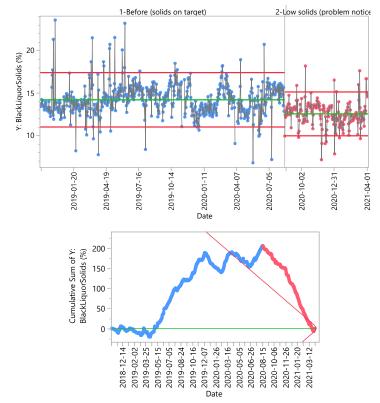
Something went wrong

\equiv The problem:

 A Kraft pulp mill has seen a drop in black liquor (BL) solids and was unable to achieve historical target (15%)

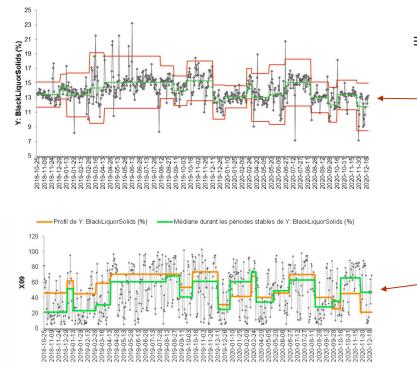
\equiv Rule of thumb

 For a 1000 t/day mill, an increase of 1% in weak BL solids represents 1M\$/year in steam and energy costs



Efficient data analysis

 \equiv Change Point Analysis (CPA) and Stability Analysis



Using the new Difference Excel Add-In (released in 2023):

- → CPA on main output variable (Y)
- Generates table with statistical change point and dates (easy to relate to an event timeline)

Sommaire des segments			CPA [5000 ¤ 0.7 ¤ 3 ¤ 5000 ¤ 0.9]					
De	À	Valeur p	Moyenne	Nb. obs.	Écart-type	Précision (±)		
2018-10-25	2018-11-20		13.4423677	27	0.38336725	0.15165503		
2018-11-21	2018-11-25	0.0008	12.650219	5	0.26729246	0.33188743		
2018-11-26	2018-12-09	0.0020	15.5228341	13	3.53299023	2.13496463		
2018-12-10	2018-12-19	0.0022	13.3203533	10	0.46458322	0.33234281		

 Stability analysis on all Xs at the same time to correlate individuals Xs CPAs with output variable

Efficient data analysis

\equiv Change Point Analysis (CPA) and Stability Analysis

- Generates an overview table of all Xs in relation with statistical phases of Y
- = Automatically ranked in order of similarity importance
- Also gives p-values, correlation slopes and identifies other Xs correlated for each individual X.

Variable (cliquer!)	r (medianes)	Valeur p de r	ΔΥ / ΔΧ	Similitude	Variables corrélées	
X09	0.619	0.0062	0.0437372	88.2%	X10; X12; X16; X21;	
X22	-0.513	0.0295	-0.00864659	82.4%	X50;	
X18	0.409	0.0923	7.3338E-05	76.5%	X62; X01; X32; X50; X5	57; X64
X51	-0.319	0.1973	-0.20629519	70.6%		
X53	0.317	0.1995	0.12249628	70.6%	X57; X64; X85; X101;	
X12	0.558	0.0162	9.7905E-06	64.7%	X09; X10; X11; X16; X2	21;
<u>X21</u>	0.495	0.0367	0.65823415	64.7%	X09; X10; X12; X16;	
X16	0.495	0.0367	0.00021923	64.7%	X09; X10; X12; X21;	
<u>X17</u>	0.317	0.2007	7.275E-05	64.7%	X13; X23;	
X23	0.317	0.2007	0.21843545	64.7%	X13; X17;	
X13	0.316	0.2009	1.166E-05	64.7%	X17; X23;	
<u>X11</u>	0.518	0.0277	0.527173	58.8%	X12; X32; X57; X64; X8	35;
X106	0.493	0.0376	0.02403858	58.8%	X18; X32; X43; X45; X4	47; X50
X01	0.451	0.0604	0.00010754	58.8%	X18; X62; X35; X64; X6	38;
X104	0.393	0.1063	0.06350711	58.8%		
<u>X62</u>	0.384	0.1155	0.00045434	58.8%	X18; X01;	
X15	-0.326	0.1871	-2.034E-05	58.8%	X20; X25;	
X25	-0.323	0.1908	-0.50601941	58.8%	X15; X20;	
X20	-0.323	0.1908	-0.00016853	58.8%	X15; X25;	
X10	0.317	0.1998	0.03182864	58.8%	X09; X12; X16; X21;	
X68	0.285	0.2518	0.00098951	58.8%	X18; X01; X32; X36; X4	43; X45
X38	0.259	0.2994	0.00073099	58.8%		
X75	-0.611	0.0071	-0.003058	52.9%	X32; X36; X43; X45; X4	47; X48
X50	-0.491	0.0384	-0.0042652	52.9%	X18; X22; X32; X36; X4	43; X45
X48	-0.367	0.1345	-0.00034643	52.9%	X32; X36; X42; X43; X4	45; X47
X31	0.444	0.0647	0.08562446	47.1%		
X79	-0.444	0.0647	0.06990934	47.1%	X32; X36; X43; X45; X4	47; X48
X69	-0.435	0.0711	4.0917915	47.1%	X30; X32; X36; X43; X4	45; X47
X35	0.427	0.0775	0.00051477	47.1%	X01; 🔺	

O Typical intervention

- \equiv Kaizen:
 - Standard problem solving through DMAIC allowed to identify major causes and resolve technical issues:
 - Mechanical failure at the brown stock washers
 - > ie.: water infiltrations through pump water glands
 - Poor loop tuning
 - > ie.: conductivity control at decker
 - Process improvement opportunities
 - > ie.: more efficient filtrate management
 - Etc.

Experience-based control

- = Historically, operators adjusted their process manually based on transferred knowledge and long term practices
 - Conductivity target of the pulp at the decker outlet
 - Dilution ratio at the brown stock
 - Extraction ratio at the digester
 - Dilutions in washer vats along with defoamer dosage
 - Etc.
- Following the Kaizen, despite all good will, BL solids were higher but still variable!

How could we elevate our game to the next level?!

Towards model-based adjustments

- \equiv Idea: have a statistical model that can predict the next observation of the KPI based on actual process values
 - Why? To anticipate the KPI trends to compensate undesirable drifts.
 - For what? To ultimately reduce the variability of a KPI; it's a sort of control loop

 \equiv Danger! This type of prediction must be used carefully... to avoid degrading instead of healing variability!!!

 \equiv Basically, it's statistical modelling with a twist:

- Organize the data table: the time increment between two rows has to be approximately the same
- Select the Xs to use in the model (already done here!). These Xs must not be colinear, they have to be independently adjustable!
- Build and validate a predictive model where Y (predicted variable) is in fact the next row's Y value...

These observations —	Date	Y: BlackLiquorSol	X18	X62	X35	X22	X39
	2019-01-24	14.4737558	31710.39	6495.8998	5743.312525	533.94260	0.07802508
	2019-01-25	13.6626888	32858.47	6101.7649	5359.286698	668.34268	0.081431
predict this value	2019-01-26	13.3084T29	31360.34	5698.3330	4687.762147	598.76097	0.079245
	2019-01-27	13.82677088	34295.29	7539.1495	5978.216386	692.00789	0.069232
	2019-01-28	14.15094186	33466.97	6813.7698	5256.662116	598.02002	0.081431
	2019-01-29	13.69417992	29896.23	6283.7558	4651.473281	538.18067	0.02370575
	2019-01-30	8.171630465	13864.32	2916.11218	7601 105		
	12 04 04	12 15255002	22244 51				

■ We used a machine learning technique called "Random Forests":

- Based on regression trees: robust handling of missing values and outliers
- Captures non-linearities and correlations structure
- Built-in protection against extrapolation
- Merely impossible to overfit and built-in cross-validation mechanism
- But: no explicit equation between the Xs and Y; model structure can't be interpreted

14

Pulp & Paper

people will like that

technique!

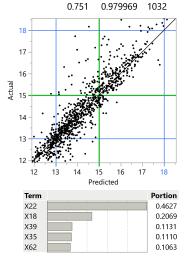
Ν

RASE

\equiv Our 1-step ahead predictive model:

RSquare

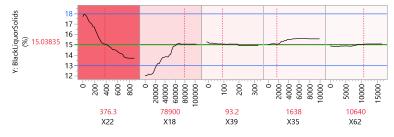
Verification that the Xs are not colinear using the eigenvalues rule (max/min<100): 1.77/0.39 = 4.5 < 100



Sufficient goodness of fit in the region that matters (inside the specs limits!) The model shows non-linearities (and the typical saturation profile from random forests).

Most Xs can be set to a robust point (flat profile).

Unfortunately, the most influential X is a unstable one...

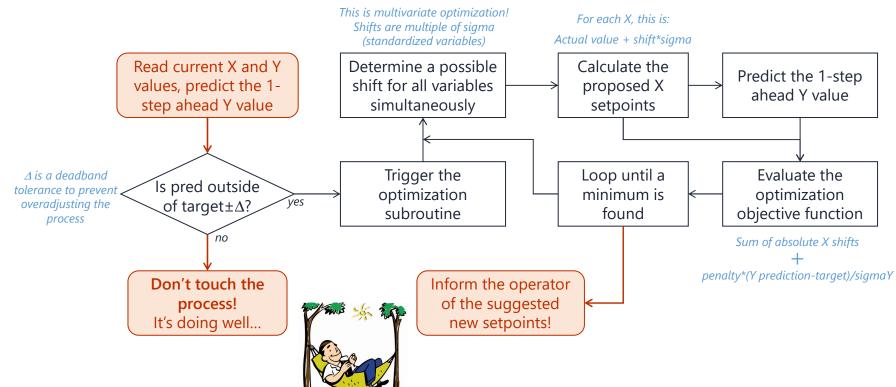


Process Optimization Through Predictive Modelling: Making It Work! | 15

Recommender algorithm

- A recommender algorithm is a procedure that suggests (to the user) a multivariate move that should bring the KPI on its target
 - At-your-risk approach: automated online process adjustments
 - This is <u>artificial</u> intelligence!
 - Safer (wiser!) use: suggest to the operator how to re-adjust the X setpoints
 - Based on her/his experience, the operator can accept or alter the recommendations.
 - This is <u>augmented</u> intelligence!

Recommender algorithm



Recommender algorithm

\equiv Complicated? Yeah... a little bit, but it pays a lot!

Random forests (or any machine learning technique!) do not offer an explicit/easy to use equation...

Have to iteratively explore the relationship through optimization!

Why using machine learning then???

Go back to the benefits of random forests! Why would you not use it?

The optimization subroutines really does the magic!!!

Control your aggressiveness with the penalty factor! But make sure to move back to the target...

Sum of absolute X shifts

penalty*(Y prediction-target)/sigmaY

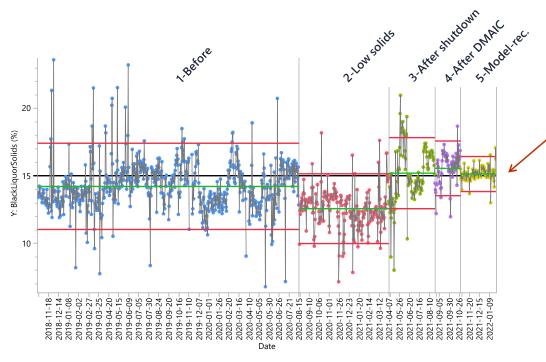
Find the overall smallest

move from actual Xs

setpoint... Call me lazy!

An happy ending story

Can you see the progress?!



On target with minimal variability! Ppk improved from 0.22 to 1.33! Off specs reduced from 23.6% to 1.1%!

	Avrg.	Stdev.	Ppk
1-Before (solids on target)	14.23	1.83	0.22
2-Low solids (problem noticed)	12.57	1.47	-0.1
3-After technical shutdown	15.2	2.11	0.35
4-After DMAIC	15.57	1.2	0.68
5-Model-recommended adjust.	15.15	0.54	1.33

Différence is a society offering coaching, consulting and training services in statistic, data science, simulation and continuous improvement.

We promote the use of quantitative tools that can be applied at the different steps of an improvement and variability reduction project.

For more information, you can contact:

Dominic St-Onge, P.Eng., MBA Consultant in Operational Excellence +1 (819) 230-1189 dstonge@difference-gcs.com

linkedin.com/in/dominic-st-onge

Vincent Béchard, MASc. Associate, Analytical Decision Specialist +1 (438) 521-5829 vbechard@difference-gcs.com

linkedin.com/in/vincentbechard