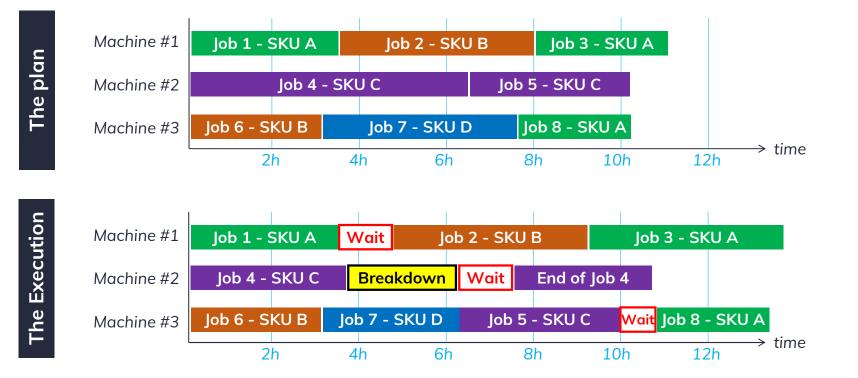
Supercharged Scheduling

How simulation can enhance scheduling by avoiding Lean waste

By Vincent Béchard Différence GCS Inc

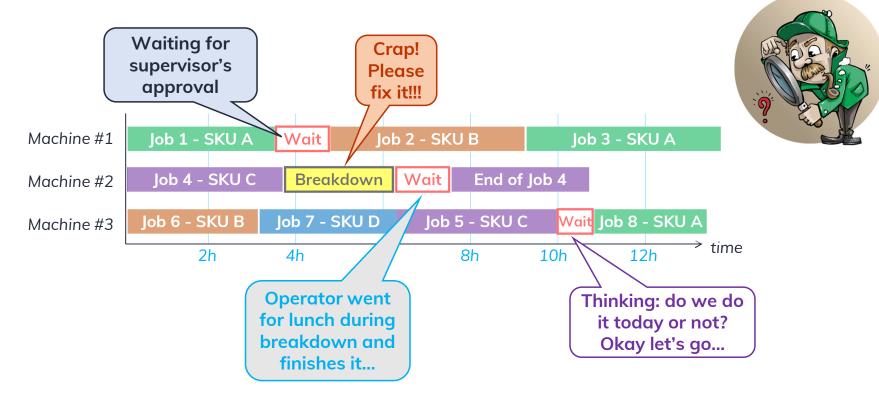
© Différence

Presentation goal and content


- \equiv Understand why good schedules fail
- = Discover Lean waste during planning
- = Learn how simulation can reduce scheduling waste
- = Illustration: a mine construction project
- = Conclusion: valuable benefits

Open questions

- \equiv How do you manage production scheduling?
 - Software, humanware
 - Duration of the exercise
 - Etc.
- = How satisfied are you with your schedules?
 - Deviance from original plans during production?
 - Any unplanned overtime required?
- Why do you think schedules are are often infeasible?


Frequent situation

© Différence

Simulation-enhanced scheduling | 4

Closer look at "The Execution"...

© Différence

Were these part of "The Plan"?

- \equiv Waiting time because...
 - Teammate went to pick tools/parts
 - Changeover longer than expected
 - No forklift available right now
 - Upstream items did not arrive on time
 - Quality inspector is busy somewhere else
- Delays because...
 - Cycle time was longer than the "average"
 - Have to travel between stations (was not planned)
 - Process failures and machine breakdowns (weren't they supposed to be 100% reliable?)

Variability kills plans!

- We typically <u>plan using averages</u>, but in real life durations <u>vary</u> around an average! Consequences:
 - Events don't happen exactly when expected/planned
 - Resources are queued for help and solutions
 - Unwanted buffers/inventories start piling up
 - Stress creeps in, switching to fire fighting ...

How was "The Plan" made up?

- \equiv Computerized approach:
 - > Team meets in a room for several hours
 - Averages are computed from the Big Data system
 - Excel spreadsheets are re-edited for the 1,000th time
 - "Oops... I messed up the formulas!"
 - "Oh no, external links are broken!!!"
- Many Lean wastes in this process!

Lost creativity

too busy, no time left to think for better ways

<u>Waiting</u>

Long time to generate a schedule, duration of reworks, bio breaks due to coffee consumption rate...

Defects

Calculation errors due to unreadable and undebugable formulas

Over processing

Inefficient manual spreadsheet operations

© Différence

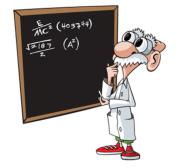
Flashback!

\equiv Remember the great ASQ event on April 24, 2019?

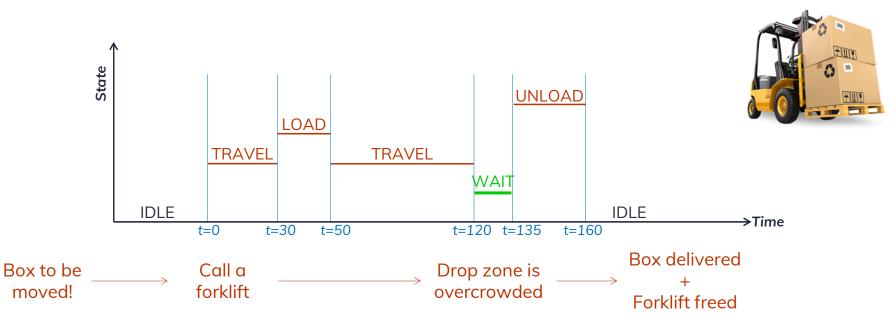
- Lean concepts: Mura, Muri and Muda
- Setup for failure: variability and over-utilization!

Can we do better?

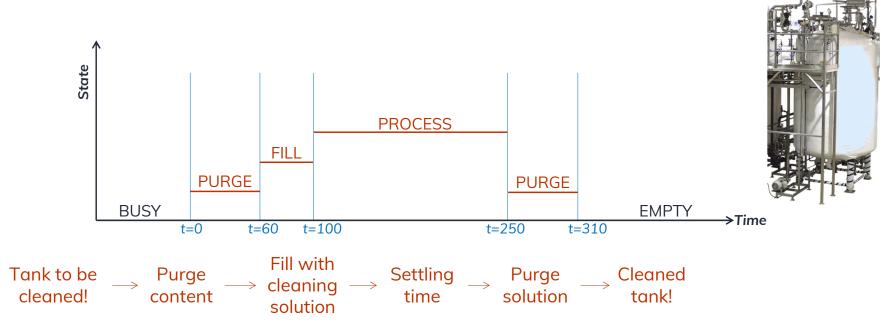
- \equiv Takeaways from the flashback :
 - Don't plan resource utilization at 100%
 - Variability will happen (arrival rates, processing times)
 - Buffers (queuing) will be needed!
- \equiv But, how can we consider when scheduling...
 - Waiting time resulting of queuing for delayed parts, shared tools, operators, supervisors...
 - Delays induced by lack of coordination between crew members
 - Process failures and machine breakdowns depending of service hours, mileage or dynamic conditions
- \equiv Not in spreadsheets, obviously!



Then Comes Discrete Events Simulation

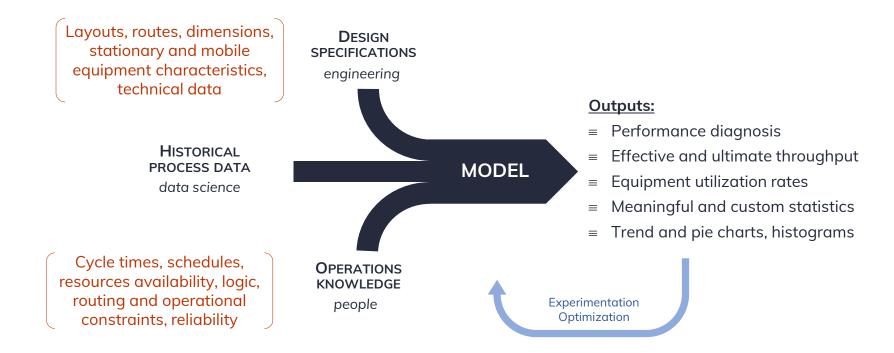


Event-based modelling


- = Model systems which <u>change states</u> at discrete points in time as a result of <u>specific events</u>
 - Examples of system EVENTS:
 - Order/part arrivals
 - Product movement
 - Machine process start/finish
 - Machine breakdown/repair
 - Examples of STATES:
 - Machines: idle, setup, processing, down
 - Queues: empty, full
 - Operators: on-shift, off-shift, utilized, idle
 - Transports: travelling, loading, unloading

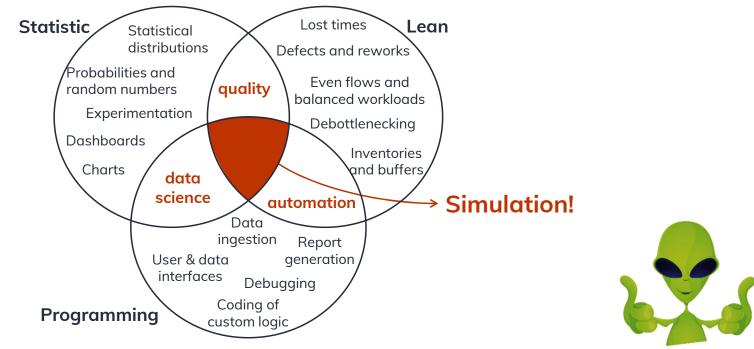
Example: moving a box

Example: sanitizing a tank



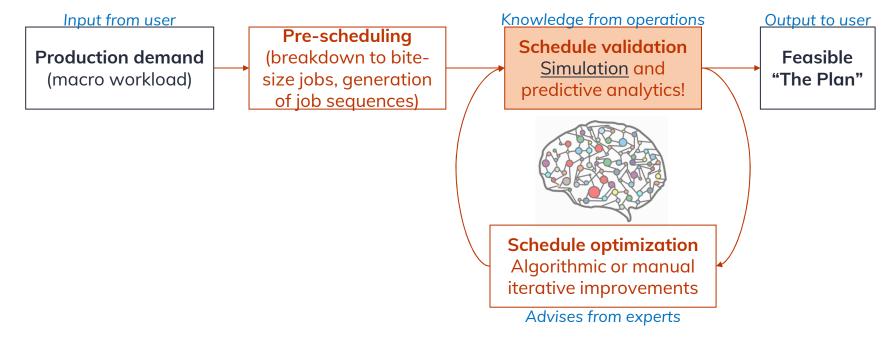
J Typical elements in a DES

- = All aspects of a production system describing or influencing flows, any element or constraint having an impact on overall performance
 - Schedules: daily shifts, weekly production, planned maintenance
 - Equipment: capacities, reliability, buffers, storage, conveying, piping
 - Operators: activities duration, task coordination, procedures
 - Maintenance: spare parts, work orders, repair times
 - **Transport**: mode, traffic, speed, loading times, queuing at intersections



DES = structured vision

Required skills to build DES


= Simulation is hard-bolted to Lean and Statistic!

Simulation-enhanced scheduling | 17

Simulation-assisted scheduling

= Using simulation during a scheduling exercise:

Illustration

The story of an underground mine construction

© Différence

Simulation-enhanced scheduling | 19

C The context

= Construction just started for a large underground mining project in central Canada

- The ~10 G\$ mine development should span over 5 years
- Obvious signs that it will take more time than expected, we are already late

= But! All engineering disciplines made schedules!

- Life-of-mine plan: how many tons from where and when
- Development plan: which drift excavated for when
- Procurement & logistics: when to bring what on site

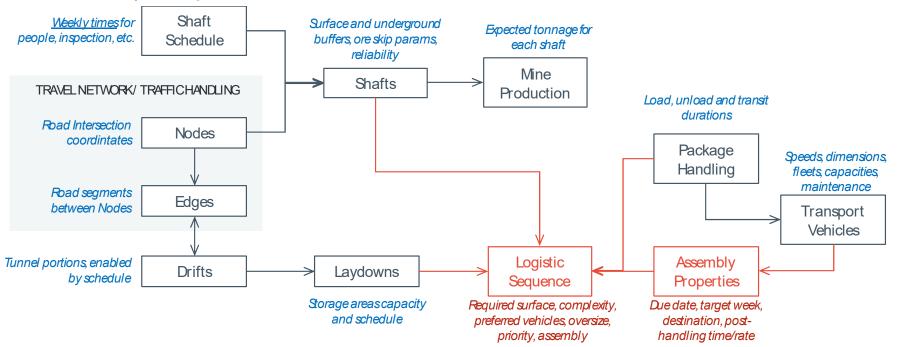
= Commercial conflicts building up...

The context – visual aids

Procurement & logistics: bringing construction materials and equipment to headframe

<u>Mystery #3</u> How the hell does all of that make its way underground?

<u>Mystery #1</u> Will routes to surface exist at the expected time?


Life-of-mine plan: excavation schedule of the ore body

Development plan: excavation schedule of the levels and passes

> <u>Mystery #2</u> Will drifts be ready on time to receive from surface?

Shaft logistics simulation

\equiv Many aspects to consider!

© Différence

Shaft logistics simulation

- = Discrete events simulation model with 3D animation to observe progress:
- \equiv Schedules, schedules:
 - Drift development
 - Mining rates
 - Daily shifts
 - Shaft & maintenance
 - Procurement

Shaft logistics simulation

Lots of input parameters....

:::

Code	Active	Description	Туре	Shaft	LoadShaft	HoistDuration	Unload Shaft	LoadVehicle
DV01	VRAI	Cage loads	SIMPLECAGE	DV	Triangular(1.2;1.6;2)	Triangular(2.5;3.3;3.9)	Triangular(1.2;1.6;2)	Bernoulli(0.25;5;2)
DV04	VRAI	Complexe Cage	TOUGHCAGE	DV	Triangular(30; 45; 60)	Triangular(2.5;3.3;3.9)	Triangular(30; 45; 60)	Lognormal(12;3;2)
DV02	VRAI	Simple slung loads	SIMPLESLING	DV	Triangular(13;15;17)	Triangular(2.5;3.3;3.9)	Triangular(13;15;17)	Bernoulli(0.60;5;15)
DV03	VRAI	Complex slung loads	TOUGHSLING	DV	Triangular(20.4;30.4;40.4)	Triangular(4.8;5.4;6.0)	Triangular(20.4;30.4;40.4)	Lognormal(12;3;2)
SS01	VRAI	Cage loads	SIMPLECAGE	SERVICE	Triangular(2.1;2.3;2.6)	Triangular(2.5;3.3;3.9)	Triangular(2.1;2.3;2.6)	Bernoulli(0.25;5;2)
SS04	VRAI	Complexe cage	TOUGHCAGE	SERVICE	Triangular(30; 45; 60)	Triangular(2.5;3.3;3.9)	Triangular(30; 45; 60)	Lognormal(12;3;2)
SS02	VRAI	Simple slung loads	SIMPLESLING	SERVICE	Triangular(13;15;17)	Triangular(2.5;3.3;3.9)	Triangular(13;15;17)	Bernoulli(0.60;5;15)
SS03	VRAI	Complex slung loads	TOUGHSLING	SERVICE	Triangular(20.4;30.4;40.4)	Triangular(4.8;5.4;6.0)	Triangular(20.4;30.4;40.4)	Lognormal(12;3;2)
< • •	EXPER	IMENT NODES EDG	ies drifts l		AFTS PACKHANDLING	PACKMOVE WEE	KLYSCHED MINEPROD	ASSEMBLYF 🕀 🗄

© Différence

....

· ·

The scheduling Kaizen

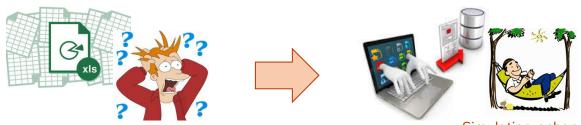
 \equiv In the war room for 2 days:

- Experts representing each of the 3 disciplines
- Project manager for live decisions approval
- Simulation expert for live trials

\equiv Simulation-assisted scheduling led to:

- Modify several laydown capacities and locations
- Modify drift development schedule (reduce waiting time)
- Swap many surface logistic sequences (proper timing)
- \equiv Achievements of this exercise:
 - Catching up delays and finalizing construction in 5 years
 - Bonus: possible path to make it 9 months earlier...

In conclusion


Valuable benefits

\equiv From hours of teamwork to minutes by one person

- What's your hourly rate? Manhours savings....
- Can humans compete with machines calculation power?
- = Optimized asset utilization
 - What's the <u>cost of poor quality schedules</u>? Think to rescheduling effort, late order deliveries, etc.
 - What is the amount of waiting and down times due to improper load balancing and sequencing?
- Optimized people utilization
 - Stop spending hours crunching numbers analyze charts and decide instead!

Valuable benefits

- Schedules tested against realistic jobs duration in real-world complexity
 - Know in advance what won't work!
 - Prepare weekly, revise daily... Foresee months ahead!
- \equiv Users participate to the optimization process
 - Iterations can be done manually best use of experience!
 - Consensual decision tool if team members don't agree on best strategies, just try them all!

Différence is a society offering coaching, consulting and training services in statistic, data science, simulation and continuous improvement.

We promote the use of quantitative tools that can be applied at the different steps of an improvement and variability reduction project.

For more information, you can contact:

Martin Carignan, M.Sc., MBA Principal Associate

514.795.8000 mcarignan@difference-gcs.com

linkedin.com/in/martincarignan

Vincent Béchard, MASc. Analytical Decision Specialist

438.521.5829 vbechard@difference-gcs.com

linkedin.com/in/vincentbechard