Simulation-Aided Production and Operations Scheduling for Food and Beverage Plants

Presented at: IEOM Detroit 2016

Industrial Engineering and Operations Management

On the Complexity of Typical Dairy Plants

The front-end challenge: optimization of a production schedule

The never-ending story that comes back every week!

The next step: increase or re-schedule volumes

- How to ensure resources utilization optimality?
- What additional volumes can be accommodated?

Planning the future: replace or add machines, design a new plant

- What will be the plant capacity?
- What equipment will be sufficient to accommodate the capacity?

On the Complexity of Dairy Plants

Why is it complicated?

- High number of possible production lots permutations
- Different and variable lot/batch sizes must be used
- Product incompatibilities need to be managed
- Allocation and priority to use share resources (CIP...)

What is it all about?

- Eliminate undesired waiting times
- Shorten run lengths and avoid over-time
- Manage limited holding tanks/silos properly

Too many variables exceeding a normal human brain capacity! But state-of-the-art simulation tools can help.

An Excel file stores all parameters describing:

- Plant equipment, cleaning rules and times
- Products properties, processing rates and cycle times

A powerful software simulates the production plan:

In-use batchers

Enriched results are exported to Excel:

- On-time schedule completion and equipment utilization rates
- Effective and feasible Gantt-style production schedule

Utilities, cases, pallets, and ingredients balances

The most useful output: detailed Gantt-style production schedule

Example: Improving an historically hand-made refined schedule:

Day:	1	2	3	4	5	6	7	GLOBAL
R1		100	100	100	50	50		90
R2	100	100	100	80	80	80		96
R3		100	100	67	67	67		91
R4		100	100	100	80	100		100
R5		100	100	100	80	100		100
R6		100		80	43	86		96
R8		100	100	100	50	100		100
R9		100						100
R20	83	100	100	100	75	100		100
R21		100	100	100	100	100		100
R23								
R24		100	100	100	100			100

	Before	After
Total waiting time (h)	254	60
Total available time (h)	890	1,021
Orders fulfilment	94.8%	100%

Gain -76% +15%

After 1 hour of simulation work

Day:	1	2	3	4	5	6	7	GLOBAL
R1		100	100	100	100	100		100
R2	100	100	100	100	100	100		100
R3		100	100	100	100	100		100
R4		100	100	100	100	100		100
R5		100	100	100	100	100		100
R6		100		100	100	100		100
R8		100	100	100	100	100		100
R9		100		100	100	100		100
R20	83	100	100	100	100	100		100
R21		100	100	100	100	100		100
R23								
R24		100	100	100	100			100

What Our Clients Do With This?

Simulation can answer to...

- Try different equipment priorities for a CIP?
- Evaluate the necessity of adding/enlarging a tank?
- Validate the additional capacity an extra filler could provide?
- Eliminate overtime using a more efficient schedule?

... in hours instead of days, with 1 person instead of a team!

Some harder challenges addressed with this simulation:

- Deliver additional volumes to support promotions
- Introduce new products in the normal schedule
- Balance workload between several plants
- Validate new plant design for an expected demand

And guess what? With training, our Clients do all of this without us!

FOR MORE INFORMATION:

Vincent Béchard

Analytical Decision Specialist Office: +1 (438) 521-5821

vbechard@difference-gcs.com

